
THE GRAY-1, A HOMEBREW CPU EXCLUSIVELY
COMPOSED OF MEMORY
Par Olivier Bailleux

ROM + ROM + … + ROM = CPU

This is a complete and functional computer central unit almost entirely made of memory.

This article presents a very original computer. Its CPU is only made of ROM, but it can execute complex programs,
such as finding all the solutions of the 8-queens problem. A video is available here.

• No microprocessor!
• The only active components are memory chips.
• Gray code both positive edge and negative edge triggered program counter.
• Ultra-RISC architecture with 8 instructions.
• No stack.
• Neither indirect nor indexed addressing mode.
• Turing complete: can compute everything that is computable by a conventional computer.

Motivations
Since the 1970s, computers are essentially composed of microprocessors, memory, and peripherals such as
keyboard, mouse, display, network interface… The microprocessor plays a central role of running the programs
located in the working memory. Most people, even among computer experts, see the microprocessor as a black
box whose operation is too complex to be understood. Creating a microprocessor from very simple components is
a good way to deeply understand how a computer works.

The four main contributions of this project are the followings:

1. Pedagogical aspect: going to the essence by creating a computer as simple as possible.

2. Science popularization: show that a simple building block (whose behavior can be described in one
sentence) is enough to make a machine that can perform the most complex tractable tasks.

3. Engineering aspect: show how a complex system can be divided into simpler parts.

Fundamentals
What is a memory?
A memory chip is a device that stores binary words. Each storage location is designated by a binary word called
address. In read mode, each time an address is put on the address input, the data stored at that address appears
on the data output. In write mode (if applicable) the data input is stored at the address placed on the address input.
The Gray-1 is essentially composed of ROM (Read Only Memory), more precisely EPROMs (Erasable and
Programmable Read Only Memory). An EPROM retains its data until it is erased by a specific ultra violet light source.
It also uses RAM (Random Access Memory) to store the running program and its variables.

What does a CPU do?
A CPU (Central Process Unit) executes a program consisting of a sequence of instructions and operands. These
instructions and operands are encoded as binary words and located into the working memory of a computer. The
instructions are simple commands such as adding two values, reading a value at a source address and writing it to
a destination address, or jumping to a given address at which the program will continue to run. A Microprocessor
is a single chip CPU. There are mainly two kind of microprocessor architecture: RISC (Reduced Instruction Set
Computers) and CISC (Complex Instruction Set Computers). RISC microprocessors typically have a few dozen
instructions, while CISC ones can have hundreds of instructions. With 8 instructions, the Gray-1 can be considered
as an ultra-RISC computer.

The figure below shows one of the instructions of the Gray-1, including the instruction code and the two operands,
which are memory addresses. In the memory, this instruction is encoded as 5 successive bytes (8 bits wide binary
words), namely 00000001, 01000000, 10100000, 01110000, and 11110000. But for sake of readability the
instruction code is represented as a mnemonic and the subsequent operands are represented in hexadecimal.

How does a CPU work?
The execution of each instruction is divided into several steps. Most CPUs include a program counter, which
successively points the current instruction, optionally one of the subsequent operands, then the next instruction to
be executed. The first step consists in reading the instruction code and store it in a dedicated register. The next
steps depend on the running instruction and can include numerous operations such that read one of the operands,
read the data designated by one of the operands, perform a calculation, store a value at the address designated by
one of the operands, or modify the current value of program counter. The details of these operations depend on
the CPU elements and how they are connected, namely its architecture. There are two kinds of elements into a
CPU: combinational circuits and sequential circuits.

Combinational circuits
The current output values of a combinational circuit depend only of its current input values. The behavior of such
a circuit can be characterized by a truth table. In a CPU, combinational circuits can have various functions such as
data multiplexing (see figure below) and performing basic arithmetic operations.

Sequential circuits
The current output values of a sequential circuit depend both on the current and the previous values of its inputs.
In other terms, a sequential circuit do have memory. A typical example of sequential circuit used in CPUs is a device
called a register, which can memorize a binary word. The figure below shows the two modes of a register : the
transparent mode, where the output has the same value as the input, and the memorization mode, where the
output does not change, regardless of the input value. The working mode is controlled by the CLK (clock)
input. Some registers are transparent when their clock is set to 0, other when it is 1, and others are positive or
negative edge triggered.

As another example, counters are useful sequential devices which produce sequences of binary words. They can be
negative or positive edge triggered. Loadable counters, which can be preset to any of these possible output values,
can be used as program counters in CPUs.

Building blocs
Implementing combinatorial circuits with ROMs
Any combinatorial circuit can be easily implemented by putting its truth table into a ROM. For example, the ALU
(Arithmetic and Logic Unit) of the Gray-1 is implemented in a vintage 27C322 EPROM that has 21 address inputs
(only 19 are used) and 16 data outputs. On the figure below, the data A and data B inputs represent two byte
encoded input values. According to the 4 bits operation code, the operation result can be for example A+B, A nand
B, A – B, A / 2, A, B… One of the other outputs are used to set a flag that indicates whether an arithmetic carry or
borrow has been generated or whether the result of some operation is 0. The remaining outputs are used to route
the instruction codes to the instruction register.

Implementing sequential circuits with ROMs
The easiest and safest way to implement a sequential circuit with a ROM involves the use of an edge-triggered
register. But the challenge I gave myself was not to use existing registers, but only ROM memory chips. This requires
turning a ROM into a register. The figure below shows how a ROM can be turned into a sequential circuit by
connecting some data outputs on some address inputs.

This principle relates to the art of asynchronous sequential circuits synthesis. Some rules have to be followed. They
will be explained bellow. To this end, let us introduce the following notations :

• Given any binary word A of length n the values of the bits of A are denoted A[0], A[1], …, A[n-1].

• Given any binary word A with length the number of address inputs of a given ROM (or EPROM), f(A) denotes
the data word memorized at the address A.

• Given two binary words A and B of length n, T(A,B) denotes the set of binary words of length n such that
for any C in T(A,B) and any i in 0..n-1, if A[i] = B[i] then C[i] = A[i] = B[i].

Register synthesis
The registers of the Gray-1 are implemented by using vintage 27C4001 EPROMs, but any ROM with at least 17
address inputs and 8 data outputs may be suitable. The storage loop connects the 8 data outputs to the address
inputs A0..A7. The data inputs of the register are the address inputs A8..A15. The address input A16 acts as the
clock of the register, which is transparent when this input is set to 0. The ROM is programmed in such a way that if
A16=0 (transparent mode) then D0..D7 = A8..A15 regardless of the values of A0..A7, else D0..D7 = A0..A7 regardless
of the values of A8..A15 (memorization mode).

 IF A16=0 THEN
 % Transparent mode
 D0..D7 <- A8..A15
ELSE
 % Storage mode
 D0..D7 <- A0..A7
 ENDIF

The two following conditions are required for proper operation:

1. The data input A8..A15 must be stable when the clock changes from 0 to 1.

2. Let A and B be two addresses such that for any C in T(A,B), f(C) = X, where X is any value. If the address
inputs change from A to B, the data output must remain equal to X.

Unfortunately, it seems that the second condition is not strictly respected by the 27C4001 EPROMs. Some
observations have led me to assume that when the address input changes from a value A to a value B, even if the
same value X is memorized in all the addresses in T(A,B), a transient state can appear on the data outputs during a
few nanoseconds. This transient phenomenon can be enough to “break” the storage loop. I worked around this
problem by putting a 1nf capacitor on each data output of the EPROMs used to implements registers. This solution
gives no guarantee of reproducibility. It could be improved by using resistor capacitor circuits in the storage loop

instead of single capacitors. Without this hack, the computer crashes after running a few tens of thousands of
instructions.

Counter synthesis
A 8 bit counter can be implemented using any ROM with at least 10 address input and 8 data output in the following
way: the data outputs D0..D7 are connected to the address inputs A0..A7, A8 acts as the clock input, and A9 acts as
the clear input. To ensure proper transition between two successive stable states, only one bit must change. To
meet this requirement, the count will be in Gray code. As another unusual feature, our counter is both positive and
negative edge triggered.

The 27C4001 EPROM is encoded as follow, where int2Gray is a function which translates the binary representation
of any integer into the related Gray code, and Gray2int is the inverse function:

IF A9=0 THEN
 % Clear mode
 D0..D7 <- 00000000
ELSE
 % Counting mode
 IF Gray2int(A0..A7) is even THEN
 IF CLK=0 THEN
 D0..D7 <- A0..A7
 ELSE
 D0..D7 <- int2Gay(Gray2int(A0..A7) + 1)
 ENDIF
 ELSE
 IF CLK=1 THEN
 D0..D7 <- A0..A7
 ELSE
 D0..D7 <- int2Gay(Gray2int(A0..A7) + 1)

 ENDIF
 ENDIF
ENDIF

From my experiments, it appears that this design does not require any transient smoothing system.

A 15-bits program counter
A loadable counter can be implemented by combining the two previously described designs. The resulting device
has 8 bit data input and 3 command inputs, namely a “clock” input, a “clear” input, and a “load” input. The latter
one allows to load the counter with the data input. The counting then continues from this value.

Two 8 bits binary counters can easily be chained so as to achieve a 16 bits counter. However, chaining two Gray
counters is less obvious, especially when these counters are both positive and negative edge triggered! The
program counter of the Gray-1 is a 15-bit loadable binary counter made with two 8 bits loadable Gray counters as
shown in the figure below. The required Gray2int and int2Gray functions are implemented into the EPROMs
dedicated to address multiplexing and arithmetic and logic unit respectively (see next section).

Architecture
The following figure shows the GRAY-1 architecture. Each of the twelve colored blocs is implemented by an EPROM.

The 3 pink blocks are counters.

• IP.H and IP.L (for Instruction Pointer Hight and Low) constitute the program counter.
• MCC is the microcode counter. It clocks the stages of execution of instructions.

The 5 blue blocks are registers.

• AL.H and AL.L (for Address Latch Hight and Low) store the address where the current data is read or written.
• A and B store the last read data.
• IFR store the current instruction code and the current value of the flag.

The 3 green blocks and the orange one are combinational functions.

• MUX.H and MUX.L constitute the multiplexer which forwards either the value of the program counter or
the value of the address latch to the address bus. They also provide the translation of the program counter
output from Gray into base 2.

• ALU is the Arithmetic and Logic Unit performs the calculations required by the execution of the instructions,
including the translation of the jump destination addresses from base 2 into Gray code.

• MC is the Microcode memory. It encodes all the actions required to execute each of the instructions
supported by the CPU.

Instruction set
The instruction set can be easily modified by reprogramming the microcode memory. Each instruction is encoded
into an odd number of bytes. The first byte is the instruction code. Its value is between 0 and 7. The next bytes
encodes the operands. If necessary, an additional alignment byte is added so that the next instruction is located at
an odd address. There are two kinds of operands: 1-byte constants and 2-byte addresses. The target addresses of
jump instruction must be odd.

The current version consists in the 8 following instructions. Given an address addr, [addr] denotes the value located
at addr.

MOV src dest % [src] -> [dest], flag set if [src] = 0
STR const dest % const -> [dest]

ADD src dest % [src] + [dest] -> [dest], flag set if carry
SUB src dest % [src] - [dest] -> [dest], flag set if borrow
NAND src dest % [src] nand [dest], flag set if result = 0
DIV2 src dest % [src] / 2 -> dest, flag set if result = 0
JF target % jump to target if flag = 1
JMP target % jump to target

These 8 instructions are more than enough to make the Gray-1 a Turing-complete computer. In fact, only two of
them – for example NAND and JF – would be sufficient, but the programs would be longer.

There are two addressing modes: immediate, only available with STR, and direct memory, available
with MOV, ADD, NAND, and DIV2. In immediate mode, the data is the operand. In direct mode, the operand is the
address where the data is located. Indirect and indexed addressing modes can be simulated by modifying the
operand of an instruction during program execution (the program modifies its own code).

Hardware details
Here is the schematic of the Gray-1.

The capacitors of 1nf that have been added to the data output of IP.H, IP.L, AL.H, AL.L, A, B, and IFR for sake of
stability are not represented. The LED bars are made with hight luminosity LEDs and 22k resistor networks. MUX.H,
ALU, MC are 16-bit EPROMs 27C322. IP.H, IP.L, AL.H, AL.L, A, B, IFR and MCC are 8 bits EPROMs 27C4001. The RAM
is a 62256 and the ROM is a 39SF040 Flash memory. Address decoding is ensured by MUX.H with the following
address map:

Address range s Role

0000..3FFF ROM
4000..7FFF RAM
8000..CFFF outputs
D000..FFFF inputs

Because the 15-bits program counter, the space available for the programs is limited to 32ko (16k ROM + 16k RAM).
The remaining 32k of the 16-bits addressing space can be only used for data storage and inputs / outputs.

Microcode
The microcode is a critical part of the CPU. It specifies all the actions required for executing each instruction. The
execution of each instruction is broken down into 32 steps. At each step, the microcode memory assigns a value to
each of the following signals:

Signal Effect when active

clock clock of the program counter
mem memory or input/output selection (read or wite)
calc ALU output is low impedance
mux address latch output -> address bus
write write to the memory or outputs, set flag
ipL ipH load data to program counter
laL laH load data to address latches
a b load data into A or B register
instr load instruction code
ula ALU operation code

The outputs of the ALU EPROM are used in the following way:

• D0..D7 is the result of the current calculation, connected to the data bus when the ULA EPROM output is
low impedance. In the following, it will be designated by result.

• D8..D10 is the instruction code, connected to the instruction code inputs of the instruction and flag
register IFR. It will be designated by code.

• D13 is the flag value, connected to the flag input of the instruction and flag register IFR. It will be
designated by flag.

The ALU operation code indicates the operation performed by the Arithmetic and Logic Unit. It should not be
confused with the instruction code. The possible values are the following:

Value Effect

0 A -> result
1 B -> result
2 A -> result, flag = 1 if A = 0
3 A - B -> result, borrow -> flag
4 A + B -> result, carry -> flag
5 A nand B -> result, flag = 1 if 0
6 A * 2 -> result
7 A / 2 -> result, flag = 1 if 0
8 0 -> result, A -> code

The figure below details the steps of executing the ADD instruction. The blue squares represent active signals. The
execution of SUB, NAND, DIV2 are similar, except for the operation code.

The figure below details the steps of executing MOV.

The figure below details the steps of executing STR.

The figure below details the steps of executing JMP and JF when flag = 1.

The figure below details the steps of executing JF when flag = 0.

Display and keyboard
Thanks to its input / output connector, the “motherboard” of the Gray-1 can be extended with various display,
output or input devices. I developed a display card driving a matrix of 128 (8 x 16) RGB LEDs. This card also has
two push buttons and a connector for a possible keyboard. Below is the schematic of this display card.

The LED matrix is composed of 16 lines of 8 LEDs mapped as follows.

The 128 green LEDs are mapped to the addresses C000 to C01F. For each byte, the most significant bit corresponds
to the rightmost LED, and the last significant bit corresponds to the leftmost LED. The red LEDs are organized in the
same way at the addresses C020 to C02F. The blue ones are organized in the same way at the
addresses C030 to C03F. By acting on the 3 concerned bits, 8 colors can be obtained, namely dark, red, blue, green,
magenta, cyan, yellow, and white.

Assembly language
The assembly language presented in this section allows for easier implementation of complex programs. It can be
used thanks to an assembler written in Java.

Comments, labels and variables

@1000 % Implantation address
.name % Variable (1 byte reserved)
.name const 70 % Initialized variable
!fill 00 ff 00 10 % Memory fill
_label % Jump <code>target
% Comment line

Basic instructions

ADD src dest % Two symbolic operands
ADD @src @dest % Other syntax for symbolic<code></code> operands
STR #52 dest % Constant and symbolic operands
ADD #01 cpt % Constant operand emulation
MOV src (7FE0) % Symbolic and numeric address operands
JF _target % Jump to a label

The third line of this example encodes the STR instruction on 4 bytes, where the second byte is a constant
(immediate addressing mode). The fourth line simulates a constant source operand by encoding the ADD
instruction on 6 bytes, where the second and third bytes represent an address where the constant is stored, namely
the address of the alignment byte located in sixth position!

Indirect addressing mode simulation
The following syntactic convention identifies operands that can be modified during the execution of the program.

MOV [pointer] @dest % pointer can be modified during execution
LEA stack @pointer % copy effective address of stack into the

% two bytes of pointer representation
ADD #01 @pointer+1 %increments the second byte of pointer

Supposing that dest is located at address 0C12, the code produced by the first line is 01 00 00 0C 12 00. The values
of the second and third bytes have to be set and modified by the program itself. They are designated by two
automatically created variables, namely pointer and pointer+1. The second line encodes two STR instructions which
store the two bytes of the effective implantation address of the variable stack into pointer and pointer+1
respectively. The third line gives an example of incrementation modulo 256 of the pointer.

Note that it is not possible to use the same pointer for reading and writing purposes.

Loop and procedure call macro-instructions
The following example shows how use the macro-instructions dedicated to program loops and procedures to write
a procedure named refresh, which transfers the content of a display buffer to the display memory. This procedure
can be called by the line !call refresh.

!PROC refresh
 lea display @src %source address
 lea video @dest %destination address

 str #30 @cpt %number of bytes to transfer

 !loop [cpt] %Repeat cpt times
 mov [src] [dest] %1 byte transfer
 add #01 @src+1 %Increments source pointer
 add #01 @dest+1 %Increments destination pointer
 !endloop
!VARS %Local variables
 .cpt %loop counter
!ENDPROC

Each variable and label defined into a procedure can be used outside the procedure by prefixing its name with the
procedure name following by the character “:“. For example, the variable named cpt into the procedure refresh
can be used outside this procedure with the name refresh:cpt. This prevents name conflicts and allows the use of
local variables as parameters.

Booting process
The boot program starts running at address 0000, in ROM, but because indirect addressing mode can be emulated
only in RAM, the first think it must do is to transfer the application program in RAM. Because this transfer process
requires indirect addressing mode, the following little procedure must be first transferred in the RAM.

@7FE0
!proc	copy
					 	 mov	[src]	[dest]	
!endproc

This transfer is made byte per byte in the following way.

@0000
_reset
 str #01 (7FE0)
 lea map (7FE1)
 lea video (7FE3)
 str #00 (7FE5)
 str #07 (7FE6)
 lea acc_e3 (7FE7)

 str #00 (7FE9)

The rest of the boot program uses this copy procedure to transfer all the bytes located at addresses 0200 to 3CFF
(in the ROM) to the addresses 4000 to 7DEF (in the RAM). On the other hand, the assembly program put at
addresses 0200 to 3CFF all the code implanted by the programmer at addresses 4000 to 7DEF.

The whole boot program is detailed below.

@01B0
%Welcome display
_map
!fill 00 89 89 8f 89 89 00 00
!fill 00 e0 a0 a0 a0 e3 00 00

!fill ff 00 00 00 00 00 ff 00
!fill ff 00 00 00 00 00 ff 00

!fill 00 70 10 70 10 70 00 00
!fill 00 04 04 04 04 1c 00 00

%Display memory
@C000
_video
@C007
_aff1
@C02f
_aff2

%Variables
@7E00
.trash
.size
.boot_nbseg
.boot_nboct

%Transfers 1 byte RAM
@7FE0
!proc copy
 mov [src] [dest]
!endproc

@0000
_reset

 %Initialization of the 1 byte transfer procedure
 str #01 (7FE0)
 lea map (7FE1)
 lea video (7FE3)
 str #00 (7FE5)

 str #07 (7FE6)
 lea acc_e3 (7FE7)
 str #00 (7FE9)

 %*************** Initializing welcome display. ****************

 str #30 @size
_acc_e1

 mov @size @trash
 jf acc_e2

 add #ff @size
 jmp copy
_acc_e3
 add #01 @copy:src+1
 add #01 @copy:dest+1
 jmp acc_e1
_acc_e2

 %************** Transfers 0200..3CFF to 4000..7DFF. ****************

jmp boot_trz

%---------------------- Transfers 256 bytes ------------------------
_boot_trseg
 str #00 @boot_nboct
 str #00 @copy:src+1
 str #00 @copy:dest+1
_boot_trseg1
 jmp copy
_boot_trseg2
 add #01 @boot_nboct
 add #01 @copy:src+1
 add #01 @copy:dest+1
 mov @boot_nboct @trash
 jf boot_trz2
 jmp boot_trseg1

%--------------- Transfers 62 segments of 256 bytes. ---------------
_boot_trz
 str #3E @boot_nbseg
 str #02 @copy:src
 str #40 @copy:dest
 lea boot_trseg2 @copy:return
_boot_trz1
 jmp _boot_trseg
 add #01 @copy:src
 mov @copy:src @aff1
 add #01 @copy:dest
 mov @copy:dest @aff2
 add #ff @boot_nbseg
 mov @boot_nbseg @trash
 jf boot_fin
 jmp boot_trz1

_boot_fin
 jmp start_prog

Simulator
A simulator written in Java facilitates the development of programs before transferring them in the ROM. It allows
step by step execution, breakpoints, memory spy and display simulation.

Future work
The next project in the pipeline is to create a CPU with 2 kinds of memory chips: ROM and edge triggered registers.
The advantage of such a design is that the CPU will be fully reproducible, with easy component supply. And because
a register is nothing but a 1-byte RAM, this CPU will be also exclusively made of memory. Below is the architecture
of this new memory-based CPU.

Pink devices are 8-bits flash memory chips. Blue devices are edge triggered registers. There is no program counter,
and each instruction must be located at an address multiple of 8. The two green devices IPE-H and IPE-L are tri-
states buffers. There are required because have not found any D-Latch circuit with both a clear input and tri-states
outputs.

