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ROM + ROM + … + ROM = CPU 
 

 
This is a complete and functional computer central unit almost entirely made of memory. 

This article presents a very original computer. Its CPU is only made of ROM, but it can execute complex programs, 
such as finding all the solutions of the 8-queens problem. A video is available here. 

• No microprocessor! 
• The only active components are memory chips. 
• Gray code both positive edge and negative edge triggered program counter. 
• Ultra-RISC architecture with 8 instructions. 
• No stack. 
• Neither indirect nor indexed addressing mode. 
• Turing complete: can compute everything that is computable by a conventional computer. 

Motivations 
Since the 1970s, computers are essentially composed of microprocessors, memory, and peripherals such as 
keyboard, mouse, display, network interface… The microprocessor plays a central role of running the programs 
located in the working memory. Most people, even among computer experts, see the microprocessor as a black 
box whose operation is too complex to be understood. Creating a microprocessor from very simple components is 
a good way to deeply understand how a computer works. 

The four main contributions of this project are the followings: 

1. Pedagogical aspect: going to the essence by creating a computer as simple as possible. 



2. Science popularization: show that a simple building block (whose behavior can be described in one 
sentence) is enough to make a machine that can perform the most complex tractable tasks. 

3. Engineering aspect: show how a complex system can be divided into simpler parts. 

Fundamentals 
What is a memory? 
A memory chip is a device that stores binary words. Each storage location is designated by a binary word called 
address. In read mode, each time an address is put on the address input, the data stored at that address appears 
on the data output. In write mode (if applicable) the data input is stored at the address placed on the address input. 
The Gray-1 is essentially composed of ROM (Read Only Memory), more precisely EPROMs (Erasable and 
Programmable Read Only Memory). An EPROM retains its data until it is erased by a specific ultra violet light source. 
It also uses RAM (Random Access Memory) to store the running program and its variables. 

 
 
What does a CPU do? 
A CPU (Central Process Unit) executes a program consisting of a sequence of instructions and operands. These 
instructions and operands are encoded as binary words and located into the working memory of a computer. The 
instructions are simple commands such as adding two values, reading a value at a source address and writing it to 
a destination address, or jumping to a given address at which the program will continue to run. A Microprocessor 
is a single chip CPU. There are mainly two kind of microprocessor architecture: RISC (Reduced Instruction Set 
Computers) and CISC (Complex Instruction Set Computers). RISC microprocessors typically have a few dozen 
instructions, while CISC ones can have hundreds of instructions. With 8 instructions, the Gray-1 can be considered 
as an ultra-RISC computer. 

The figure below shows one of the instructions of the Gray-1, including the instruction code and the two operands, 
which are memory addresses. In the memory, this instruction is encoded as 5 successive bytes (8 bits wide binary 
words), namely 00000001, 01000000, 10100000, 01110000, and 11110000. But for sake of readability the 
instruction code is represented as a mnemonic and the subsequent operands are represented in hexadecimal. 



 
 
How does a CPU work? 
The execution of each instruction is divided into several steps. Most CPUs include a program counter, which 
successively points the current instruction, optionally one of the subsequent operands, then the next instruction to 
be executed. The first step consists in reading the instruction code and store it in a dedicated register. The next 
steps depend on the running instruction and can include numerous operations such that read one of the operands, 
read the data designated by one of the operands, perform a calculation, store a value at the address designated by 
one of the operands, or modify the current value of program counter. The details of these operations depend on 
the CPU elements and how they are connected, namely its architecture. There are two kinds of elements into a 
CPU: combinational circuits and sequential circuits. 

Combinational circuits 
The current output values of a combinational circuit depend only of its current input values. The behavior of such 
a circuit can be characterized by a truth table. In a CPU, combinational circuits can have various functions such as 
data multiplexing (see figure below) and performing basic arithmetic operations. 

 
 
Sequential circuits 
The current output values of a sequential circuit depend both on the current and the previous values of its inputs. 
In other terms, a sequential circuit do have memory. A typical example of sequential circuit used in CPUs is a device 
called a register, which can memorize a binary word. The figure below shows the two modes of a register : the 
transparent mode, where the output has the same value as the input, and the memorization mode, where the 
output does not change, regardless of the input value. The working mode is controlled by the CLK (clock) 
input.  Some registers are transparent when their clock is set to 0, other when it is 1, and others are positive or 
negative edge triggered. 

 



 
 
As another example, counters are useful sequential devices which produce sequences of binary words. They can be 
negative or positive edge triggered. Loadable counters, which can be preset to any of these possible output values, 
can be used as program counters in CPUs. 

Building blocs 
Implementing combinatorial circuits with ROMs 
Any combinatorial circuit can be easily implemented by putting its truth table into a ROM. For example, the ALU 
(Arithmetic and Logic Unit) of the Gray-1 is implemented in a vintage 27C322 EPROM that has 21 address inputs 
(only 19 are used) and 16 data outputs. On the figure below, the data A and data B inputs represent two byte 
encoded input values. According to the 4 bits operation code, the operation result can be for example A+B, A nand 
B, A – B, A / 2, A, B… One of the other outputs are used to set a flag that indicates whether an arithmetic carry or 
borrow has been generated or whether the result of some operation is 0. The remaining outputs are used to route 
the instruction codes to the instruction register. 

 
 
Implementing sequential circuits with ROMs 
The easiest and safest way to implement a sequential circuit with a ROM involves the use of an edge-triggered 
register. But the challenge I gave myself was not to use existing registers, but only ROM memory chips. This requires 
turning a ROM into a register. The figure below shows how a ROM can be turned into a sequential circuit by 
connecting some data outputs on some address inputs. 

 



 
 
This principle relates to the art of asynchronous sequential circuits synthesis. Some rules have to be followed. They 
will be explained bellow. To this end, let us introduce the following notations : 

• Given any binary word A of length n the values of the bits of A are denoted A[0], A[1], …, A[n-1]. 

• Given any binary word A with length the number of address inputs of a given ROM (or EPROM), f(A) denotes 
the data word memorized at the address A. 

• Given two binary words A and B of length n, T(A,B) denotes the set of binary words of length n such that 
for any C in T(A,B) and any i in 0..n-1, if A[i] = B[i] then C[i] = A[i] = B[i]. 

Register synthesis 
The registers of the Gray-1 are implemented by using vintage 27C4001 EPROMs, but any ROM with at least 17 
address inputs and 8 data outputs may be suitable. The storage loop connects the 8 data outputs to the address 
inputs A0..A7. The data inputs of the register are the address inputs A8..A15. The address input A16 acts as the 
clock of the register, which is transparent when this input is set to 0. The ROM is programmed in such a way that if 
A16=0 (transparent mode) then D0..D7 = A8..A15 regardless of the values of A0..A7, else D0..D7 = A0..A7 regardless 
of the values of A8..A15 (memorization mode). 

    IF A16=0 THEN 
   % Transparent mode 
   D0..D7 <- A8..A15 
ELSE 
   % Storage mode 
   D0..D7 <- A0..A7 
  ENDIF 

The two following conditions are required for proper operation: 

1. The data input A8..A15 must be stable when the clock changes from 0 to 1. 

2. Let A and B be two addresses such that for any C in T(A,B), f(C) = X, where X is any value. If the address 
inputs change from A to B, the data output must remain equal to X. 

Unfortunately, it seems that the second condition is not strictly respected by the 27C4001 EPROMs. Some 
observations have led me to assume that when the address input changes from a value A to a value B, even if the 
same value X is memorized in all the addresses in T(A,B), a transient state can appear on the data outputs during a 
few nanoseconds. This transient phenomenon can be enough to “break” the storage loop. I worked around this 
problem by putting a 1nf capacitor on each data output of the EPROMs used to implements registers. This solution 
gives no guarantee of reproducibility. It could be improved by using resistor capacitor circuits in the storage loop 



instead of single capacitors. Without this hack, the computer crashes after running a few tens of thousands of 
instructions. 

 
 
Counter synthesis 
A 8 bit counter can be implemented using any ROM with at least 10 address input and 8 data output in the following 
way: the data outputs D0..D7 are connected to the address inputs A0..A7, A8 acts as the clock input, and A9 acts as 
the clear input. To ensure proper transition between two successive stable states, only one bit must change. To 
meet this requirement, the count will be in Gray code. As another unusual feature, our counter is both positive and 
negative edge triggered. 

 
 
The 27C4001 EPROM is encoded as follow, where int2Gray is a function which translates the binary representation 
of any integer into the related Gray code, and Gray2int is the inverse function: 

IF A9=0 THEN 
   % Clear mode 
   D0..D7 <- 00000000 
ELSE  
   % Counting mode 
   IF Gray2int(A0..A7) is even THEN 
      IF CLK=0 THEN 
         D0..D7 <- A0..A7 
      ELSE 
         D0..D7 <- int2Gay( Gray2int(A0..A7) + 1 ) 
      ENDIF 
   ELSE 
      IF CLK=1 THEN 
         D0..D7 <- A0..A7 
      ELSE 
         D0..D7 <- int2Gay( Gray2int(A0..A7) + 1 ) 



      ENDIF 
   ENDIF 
ENDIF 

 
From my experiments, it appears that this design does not require any transient smoothing system. 

A 15-bits program counter 
A loadable counter can be implemented by combining the two previously described designs. The resulting device 
has 8 bit data input and 3 command inputs, namely a “clock” input, a “clear” input, and a “load” input. The latter 
one allows to load the counter with the data input. The counting then continues from this value. 

Two 8 bits binary counters can easily be chained so as to achieve a 16 bits counter. However, chaining two Gray 
counters is less obvious, especially when these counters are both positive and negative edge triggered! The 
program counter of the Gray-1 is a 15-bit loadable binary counter made with two 8 bits loadable Gray counters as 
shown in the figure below. The required Gray2int and int2Gray functions are implemented into the EPROMs 
dedicated to address multiplexing and arithmetic and logic unit respectively (see next section). 

 
 

Architecture 
The following figure shows the GRAY-1 architecture. Each of the twelve colored blocs is implemented by an EPROM. 

 



 
 
The 3 pink blocks are counters. 

• IP.H and IP.L (for Instruction Pointer Hight and Low) constitute the program counter. 
• MCC is the microcode counter. It clocks the stages of execution of instructions. 

 
The 5 blue blocks are registers. 

• AL.H and AL.L (for Address Latch Hight and Low) store the address where the current data is read or written. 
• A and B store the last read data. 
• IFR store the current instruction code and the current value of the flag. 

 
The 3 green blocks and the orange one are combinational functions. 

• MUX.H and MUX.L constitute the multiplexer which forwards either the value of the program counter or 
the value of the address latch to the address bus. They also provide the translation of the program counter 
output from Gray into base 2. 

• ALU is the Arithmetic and Logic Unit performs the calculations required by the execution of the instructions, 
including the translation of the jump destination addresses from base 2 into Gray code. 

• MC is the Microcode memory. It encodes all the actions required to execute each of the instructions 
supported by the CPU. 

Instruction set 
The instruction set can be easily modified by reprogramming the microcode memory. Each instruction is encoded 
into an odd number of bytes. The first byte is the instruction code. Its value is between 0 and 7. The next bytes 
encodes the operands. If necessary, an additional alignment byte is added so that the next instruction is located at 
an odd address. There are two kinds of operands: 1-byte constants and 2-byte addresses. The target addresses of 
jump instruction must be odd. 

The current version consists in the 8 following instructions. Given an address addr, [addr] denotes the value located 
at addr. 

MOV src dest     % [src] -> [dest], flag set if [src] = 0 
STR const dest   % const -> [dest] 



ADD src dest     % [src] + [dest] -> [dest], flag set if carry 
SUB src dest     % [src] - [dest] -> [dest], flag set if borrow 
NAND src dest     % [src] nand [dest], flag set if result = 0 
DIV2 src dest     % [src] / 2 -> dest, flag set if result = 0 
JF target         % jump to target if flag = 1 
JMP target       % jump to target 

 
These 8 instructions are more than enough to make the Gray-1 a Turing-complete computer. In fact, only two of 
them – for example NAND and JF – would be sufficient, but the programs would be longer. 

There are two addressing modes: immediate, only available with STR, and direct memory, available 
with MOV, ADD, NAND, and DIV2. In immediate mode, the data is the operand. In direct mode, the operand is the 
address where the data is located. Indirect and indexed addressing modes can be simulated by modifying the 
operand of an instruction during program execution (the program modifies its own code). 

Hardware details 
Here is the schematic of the Gray-1.  

 
 
The capacitors of 1nf that have been added to the data output of IP.H, IP.L, AL.H, AL.L, A, B, and IFR for sake of 
stability are not represented. The LED bars are made with hight luminosity LEDs and 22k resistor networks. MUX.H, 
ALU, MC are 16-bit EPROMs 27C322. IP.H, IP.L, AL.H, AL.L, A, B, IFR and MCC are 8 bits EPROMs 27C4001. The RAM 
is a 62256 and the ROM is a 39SF040 Flash memory. Address decoding is ensured by MUX.H with the following 
address map: 

Address range          s         Role 
  
0000..3FFF           ROM 
4000..7FFF          RAM 
8000..CFFF          outputs 
D000..FFFF          inputs 

 
Because the 15-bits program counter, the space available for the programs is limited to 32ko (16k ROM + 16k RAM). 
The remaining 32k of the 16-bits addressing space can be only used for data storage and inputs / outputs. 



Microcode 
The microcode is a critical part of the CPU. It specifies all the actions required for executing each instruction. The 
execution of each instruction is broken down into 32 steps. At each step, the microcode memory assigns a value to 
each of the following signals: 

Signal         Effect when active 
  
clock          clock of the program counter 
mem            memory or input/output selection (read or wite) 
calc          ALU output is low impedance 
mux            address latch output -> address bus 
write  write to the memory or outputs, set flag 
ipL   ipH      load data to program counter 
laL   laH      load data to address latches 
a b          load data into A or B register 
instr  load instruction code 
ula            ALU operation code 

 
The outputs of the ALU EPROM are used in the following way: 

• D0..D7 is the result of the current calculation, connected to the data bus when the ULA EPROM output is 
low impedance. In the following, it will be designated by result. 

• D8..D10 is the instruction code, connected to the instruction code inputs of the instruction and flag 
register IFR. It will be designated by code. 

• D13 is the flag value, connected to the flag input of the instruction and flag register IFR. It will be 
designated by flag. 

 
The ALU operation code indicates the operation performed by the Arithmetic and Logic Unit. It should not be 
confused with the instruction code. The possible values are the following: 

Value        Effect 
  
0            A -> result 
1            B -> result 
2            A -> result, flag = 1 if A = 0 
3            A - B -> result, borrow -> flag 
4            A + B -> result, carry -> flag 
5            A nand B -> result, flag = 1 if 0 
6            A * 2 -> result 
7            A / 2 -> result, flag = 1 if 0 
8            0 -> result, A -> code 

 
  



The figure below details the steps of executing the ADD instruction. The blue squares represent active signals. The 
execution of SUB, NAND, DIV2 are similar, except for the operation code. 

 

 
 

 

The figure below details the steps of executing MOV. 

 

 
 

 

 



The figure below details the steps of executing STR. 

 

 
 

 

The figure below details the steps of executing JMP and JF when flag = 1. 

 

 
 

 

 

 



The figure below details the steps of executing JF when flag = 0. 

 

 
 

Display and keyboard 
Thanks to its input / output connector, the “motherboard” of the Gray-1 can be extended with various display, 
output or input devices. I developed a display card driving a matrix of 128 (8 x 16) RGB LEDs. This card also has 
two push buttons and a connector for a possible keyboard. Below is the schematic of this display card. 

 

 
 
 
 
 



The LED matrix is composed of 16 lines of 8 LEDs mapped as follows. 
 

 
 

The 128 green LEDs are mapped to the addresses C000 to C01F. For each byte, the most significant bit corresponds 
to the rightmost LED, and the last significant bit corresponds to the leftmost LED. The red LEDs are organized in the 
same way at the addresses C020 to C02F. The blue ones are organized in the same way at the 
addresses C030 to C03F. By acting on the 3 concerned bits, 8 colors can be obtained, namely dark, red, blue, green, 
magenta, cyan, yellow, and white. 

Assembly language 
The assembly language presented in this section allows for easier implementation of complex programs. It can be 
used thanks to an assembler written in Java. 

Comments, labels and variables 
 

@1000                   % Implantation address 
.name                   % Variable (1 byte reserved) 
.name const 70                    % Initialized variable 
!fill 00 ff 00 10       % Memory fill 
_label                   % Jump <code>target 
% Comment line 

 

Basic instructions 
 

ADD src dest             % Two symbolic operands 
ADD @src @dest           % Other syntax for symbolic<code></code> operands 
STR #52 dest             % Constant and symbolic operands 
ADD #01 cpt             % Constant operand emulation 
MOV src (7FE0)           % Symbolic and numeric address operands 
JF _target               % Jump to a label 

 
The third line of this example encodes the STR instruction on 4 bytes, where the second byte is a constant 
(immediate addressing mode). The fourth line simulates a constant source operand by encoding the ADD 
instruction on 6 bytes, where the second and third bytes represent an address where the constant is stored, namely 
the address of the alignment byte located in sixth position! 

Indirect addressing mode simulation 
The following syntactic convention identifies operands that can be modified during the execution of the program. 



MOV [pointer] @dest        % pointer can be modified during execution 
LEA stack @pointer          % copy effective address of stack into the  

% two bytes of pointer representation 
ADD #01 @pointer+1         %increments the second byte of pointer 

 
Supposing that dest is located at address 0C12, the code produced by the first line is 01 00 00 0C 12 00. The values 
of the second and third bytes have to be set and modified by the program itself. They are designated by two 
automatically created variables, namely pointer and pointer+1. The second line encodes two STR instructions which 
store the two bytes of the effective implantation address of the variable stack into pointer and pointer+1 
respectively. The third line gives an example of incrementation modulo 256 of the pointer. 

Note that it is not possible to use the same pointer for reading and writing purposes. 

Loop and procedure call macro-instructions 
The following example shows how use the macro-instructions dedicated to program loops and procedures to write 
a procedure named refresh, which transfers the content of a display buffer to the display memory. This procedure 
can be called by the line !call refresh. 

!PROC refresh 
     lea display @src           %source address 
     lea video @dest            %destination address 

    str #30 @cpt               %number of bytes to transfer 
  
     !loop [cpt]                 %Repeat cpt times 
         mov [src] [dest]       %1 byte transfer 
          add #01 @src+1        %Increments source pointer 
          add #01 @dest+1       %Increments destination pointer 
     !endloop 
!VARS                             %Local variables 
     .cpt                         %loop counter 
!ENDPROC 
 
Each variable and label defined into a procedure can be used outside the procedure by prefixing its name with the 
procedure name following by the character “:“. For example, the variable named cpt into the procedure refresh 
can be used outside this procedure with the name refresh:cpt. This prevents name conflicts and allows the use of 
local variables as parameters. 

Booting process 
The boot program starts running at address 0000, in ROM, but because indirect addressing mode can be emulated 
only in RAM, the first think it must do is to transfer the application program in RAM. Because this transfer process 
requires indirect addressing mode, the following little procedure must be first transferred in the RAM. 

@7FE0 
!proc	copy 
					 	 mov	[src]	[dest]	  
!endproc 

 
This transfer is made byte per byte in the following way. 

@0000 
_reset 
    str #01 (7FE0) 
    lea map (7FE1) 
    lea video (7FE3) 
    str #00 (7FE5) 
    str #07 (7FE6) 
    lea acc_e3 (7FE7) 



    str #00 (7FE9) 
 
The rest of the boot program uses this copy procedure to transfer all the bytes located at addresses 0200 to 3CFF 
(in the ROM) to the addresses 4000 to 7DEF (in the RAM). On the other hand, the assembly program put at 
addresses 0200 to 3CFF all the code implanted by the programmer at addresses 4000 to 7DEF. 

The whole boot program is detailed below. 
 

@01B0 
%Welcome display 
_map  
!fill 00 89 89 8f 89 89 00 00 
!fill 00 e0 a0 a0 a0 e3 00 00 
  
!fill ff 00 00 00 00 00 ff 00 
!fill ff 00 00 00 00 00 ff 00 
  
!fill 00 70 10 70 10 70 00 00 
!fill 00 04 04 04 04 1c 00 00 
  
%Display memory 
@C000 
_video 
@C007 
_aff1 
@C02f 
_aff2 
  
%Variables 
@7E00 
.trash 
.size 
.boot_nbseg 
.boot_nboct 
  
%Transfers 1 byte RAM 
@7FE0 
!proc copy 
  mov [src] [dest]  
!endproc 
  
@0000 
_reset 
  
 %Initialization of the 1 byte transfer procedure 
  str #01 (7FE0) 
  lea map (7FE1) 
  lea video (7FE3) 
  str #00 (7FE5) 
  
  str #07 (7FE6) 
  lea acc_e3 (7FE7) 
  str #00 (7FE9) 
  
 %*************** Initializing welcome display. **************** 
  
  str #30 @size 
_acc_e1 



  mov @size @trash 
  jf acc_e2 
  
  add #ff @size 
  jmp copy 
_acc_e3  
  add #01 @copy:src+1 
  add #01 @copy:dest+1 
  jmp acc_e1 
_acc_e2 
  
 %************** Transfers 0200..3CFF to 4000..7DFF. **************** 
  
jmp boot_trz 
  
%---------------------- Transfers 256 bytes ------------------------ 
_boot_trseg 
  str #00 @boot_nboct 
  str #00 @copy:src+1 
  str #00 @copy:dest+1 
_boot_trseg1 
  jmp copy 
_boot_trseg2 
  add #01 @boot_nboct 
  add #01 @copy:src+1 
  add #01 @copy:dest+1 
  mov @boot_nboct @trash 
  jf boot_trz2 
  jmp boot_trseg1 
  
%--------------- Transfers 62 segments of 256 bytes. --------------- 
_boot_trz 
  str #3E @boot_nbseg 
  str #02 @copy:src 
  str #40 @copy:dest 
  lea boot_trseg2 @copy:return 
_boot_trz1 
  jmp _boot_trseg 
  add #01 @copy:src 
  mov @copy:src @aff1 
  add #01 @copy:dest  
  mov @copy:dest @aff2 
  add #ff @boot_nbseg 
  mov @boot_nbseg @trash 
  jf boot_fin 
  jmp boot_trz1 
  
_boot_fin 
  jmp start_prog 

 

Simulator 
A simulator written in Java facilitates the development of programs before transferring them in the ROM. It allows 
step by step execution, breakpoints, memory spy and display simulation. 



 
 

Future work 
The next project in the pipeline is to create a CPU with 2 kinds of memory chips: ROM and edge triggered registers. 
The advantage of such a design is that the CPU will be fully reproducible, with easy component supply. And because 
a register is nothing but a 1-byte RAM, this CPU will be also exclusively made of memory. Below is the architecture 
of this new memory-based CPU. 

 
 



Pink devices are 8-bits flash memory chips. Blue devices are edge triggered registers. There is no program counter, 
and each instruction must be located at an address multiple of 8. The two green devices IPE-H and IPE-L are tri-
states buffers. There are required because have not found any D-Latch circuit with both a clear input and tri-states 
outputs. 

 


