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Abstract 

DPLL and CDCL SAT solvers produce sequences of assumptions and deductions thanks to unitary 
propagation. In CDCL solvers, a bottom-up analysis of these sequences produces clauses that explain the 
conflicts. The idea proposed in this note is to analyze such sequences in chronological order of 
assumptions and deductions to produce other clauses than those produced by CDCL solvers. 

AUP-sequences 

DPLL and CDCL SAT solvers learn clauses thanks to unitary propagation, more precisely by producing 
sequences of assumptions and deductions leading to a contradiction. In this post, such sequences will be 
called AUP-contradictory sequences (AUP for Assumption and Unitary Propagation). Assumptions and 
deductions are literals. 

Here is an example of a contradictory AUP-sequence that could be produced by a CDCL solver or a DPLL 
solver.   

 

Circles represent assumptions and squares deductions. The clauses used for the deductions are 
numbered from 1 to 8. 

DPLL and CDCL do not extract the same information from such a sequence. DPLL implicitly deducts the 
negation of the assumptions, while CDCL performs a bottom-up analysis of the sequence from the so-
called conflict clause, which is the clause 8 in the example. 

Bottom-up and to-down analysis 

From the example sequence, DPLL implicitly produces the clause (¬ a ∨ ¬ b ∨ ¬ e ∨ ¬ h) while CDCL with 
first UIP learning scheme explicitly produces the clause (¬ a ∨ ¬ g ∨ ¬ h). But other clauses can be 
deducted. Each of these clauses is the negation of an UP-nogood, i.e. a set of literals allowing unit 
propagation to produce the empty clause. 

The following nogoods can be produced by a bottom-up analysis "à la CDCL": 



 

Each framed literal is replaced in the next nogood by those that allowed it to be deduced. The surrounded 
literals are assumptions of the AUP-sequence. The fourth nogood is the one that will be retained by a 
CDCL solver with first UIP learning scheme. The principle of bottom-up analysis has been the subject of 
numerous publications related to CDCL solvers and their learning schemes such as first UIP or last UIP, 
for example. 

But it is possible to produce the following nogoods by a top-down analysis of the assumptions. 

 

Top-down analysis produces UP-nogoods that are generally different from those produced by bottom-up 
analysis. To the best of my knowledge, it is rarely, if ever, mentioned in the literature. I will use the above 
example of AUP-sequence to illustrate the principle. 

Since a and b allow unit propagation to deduce c, the set {a, b, ¬c} is an UP-nogood. But it is of no interest 
since its negation is clause 1, already known. 

But a and b also allow to deduce d in two steps thanks to the clauses 1 and 2, so the set {a, b, ¬ d} is a 
UP-nogood whose negation is the clause (¬ a ∨ ¬ b ∨ d). Incidentally, this clause is the resolvent of clauses 
1 and 2 as defined in General Resolution. 

Similarly, assumptions a, b, and e allow the literals f and g to be deduced, so {a, b, e, ¬f} and {a, b, e, ¬g} 
are UP-nogoods that establish that the clauses (¬a ∨ ¬b ∨ ¬e ∨ f) and (¬a ∨ ¬b ∨ ¬e ∨ g) are logical 
consequences of the clauses that were used to achieve unit resolutions in the AUP- sequence. 

The last nogood is the set of assumptions, and its negation therefore represents the result of an ad 
absurdum reasoning, which deduces the negation of the contradictory assumptions. 

 



Exploiting top-down analysis 

I propose to develop SAT solvers and other inference systems using top-down analysis of AUP-
sequences. The theoretical interest of such a deductive system is that it immediately captures the power 
of general Resolution. For example, the Resolution of (a ∨ b ∨ x) and (c ∨ d ∨ ¬ x) produces the resolvent 
(a ∨ b ∨ c ∨ d). This resolvent can be produced by a top-down analysis of the AUP-sequence from the 
assumptions ¬ a, ¬ b and ¬ c, that will propagate d. 

On the other hand, this system has the advantage of allowing deductions to be made from AUP-sequences 
that do not result in a contradiction or that are not extended to a contradiction. One could imagine a SAT 
solver with learning, in which AUP-sequences can be stopped before a conflict occurs, in a to way limit the 
size of the produced clauses. 

 


